Part Number Hot Search : 
DTC143 UN1118 PQ09RF21 MT8965AC LR745N3 SKUT85T MC14001 000906
Product Description
Full Text Search
 

To Download XC61CCN0901NB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CMOS Highly Accurate:1% (VDF=2.6V~5.0V) 2% (VDF=0.8V~6.0V) Low Power Consumption: 0.7A (VIN=1.5V)
APPLICATIONS
Microprocessor reset circuitry Memory battery back-up circuits Power-on reset circuits Power failure detection System battery life and charge voltage monitors
GENERAL DESCRIPTION
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser trimming technologies. Detect voltage is extremely accurate with minimal temperature drift. Both CMOS and N-channel open drain output configurations are available.
FEATURES
Highly Accurate : 2% (Low Voltage VD: 0.8V~1.5V) (Standard Voltage VD: 1.6V~6.0V) 1% (Standard Voltage VD: 2.6V~5.0V) Low Power Consumption : 0.7A (TYP.) [VIN=1.5V] Detect Voltage Range :0.8V ~ 6.0V in 100mV increments Operating Voltage Range :0.7V ~ 6.0V (Low Voltage) 0.7V10.0V (Standard Voltage) Detect Voltage Temperature Characteristics : 100ppm/ (TYP.) @Ta=25 OC Output Configuration : N-channel open drain or CMOS Ultra Small Packages : SSOT-24 (150mW) SOT-23 (250mW) SOT-89 (500mW) TO-92 (300mW)
TYPICAL APPLICATION CIRCUITS
TYPICAL PERFORMANCE CHARACTERISTICS
XC61C ETR0201_006
1/17
XC61C Series
PIN CONFIGURATION
PIN ASSIGNMENT
PIN NUMBER SSOT-24 2 4 1 3 SOT-23 3 2 1 SOT-89 2 3 1 TO-92 (T) TO-92 (L)
PIN NAME VIN VSS VOUT NC
FUNCTION Supply Voltage t I t Ground Output No Connection
2 3 1 -
1 2 3 -
PRODUCT CLASSIFICATION
Ordering Information
XC61C DESIGNATOR DESCRIPTION Output Configuration Detect Voltage Output Delay Detect Accuracy SYMBOL C N 08 ~ 60 0 1 2 N M P T L R L H B DESCRIPTION : CMOS output : N-ch open drain output : e.g.0.9V 0, 9 : e.g.1.5V 1, 5 : No delay : Within 1% : Within 2% : SSOT-24 (SC-82) : SOT-23 : SOT-89 : TO-92 (Standard) : TO-92 (Custom pin configuration) : Embossed tape, standard feed : Embossed tape, reverse feed : Paper type (TO-92) : Bag (TO-92)
Package
Device Orientation
2/17
XC61C
Series
PACKAGING INFORMATION
SSOT-24 (SC-82) SOT-23
SOT-89
TO-92
3/17
XC61C Series
MARKING RULE
SSOT-24, SOT-23, SOT-89
4

3
Represents integer of detect voltage and CMOS Output (XC61CC series) MARK A B C D E F H CONFIGURATION CMOS CMOS CMOS CMOS CMOS CMOS CMOS VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X
1
2
3

N-Channel Open Drain Output (XC61CN series) MARK K L M N P R S CONFIGURATION N-ch N-ch N-ch N-ch N-ch N-ch N-ch VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X
1
2

Represents decimal number of detect voltage MARK 0 1 2 3 4 VOLTAGE (V) X.0 X.1 X.2 X.3 X.4 MARK 5 6 7 8 9 VOLTAGE (V) X.5 X.6 X.7 X.8 X.9
1
2
3
Represents delay time (Except for SSOT-24)
MARK 3 DELAY TIME No Delay Time PRODUCT SERIES XC61Cxxx0xxx
Represents production lot number Based on the internal standard. (G, I, J, O, Q, W excepted)
4/17
XC61C
Series
MARKING RULE (Continued)
TO-92
Represents output configuration MARK C N OUTPUT CONFIGURATION CMOS N-ch
, Represents detect voltage (ex.) MARK 3 5 3 0 VOLTAGE (V) 3.3 5.0
Represents delay time MARK DELAY TIME 0 MARK 1 2 No delay DETECT VOLTAGE ACCURACY Within 1% (Semi-custom) Within 2% Represents detect voltage accuracy
Represents a least significant digit of production year MARK 5 6 PRODUCTION YEAR 2005 2006
Represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted) * No character inversion used.
5/17
XC61C Series
BLOCK DIAGRAMS
(1) CMOS Output (2) N-ch Open Drain Output
ABSOLUTE MAXIMUM RATINGS
Ta = 25OC
PARAMETER Input Voltage Output Current CMOS Output Voltage N-ch Open Drain Output *1 N-ch Open Drain Output *2 SSOT-24 Power Dissipation SOT-23 SOT-89 TO-92 Operating Temperature Range Storage Temperature Range Pd VOUT *1 *2 SYMBOL VIN IOUT RATINGS 9.0 12.0 50 VSS -0.3 ~ VIN +0.3 VSS -0.3 ~ 9.0 VSS -0.3 ~ 12.0 150 250 500 300 -40+85 -40+125 mW V UNITS V mA
Topr Tstg
O O
C C
*1: Low voltage: VDF(T)=0.8V~1.5V *2: Standard voltage: VDF(T)=1.6V~6.0V
6/17
XC61C
Series
ELECTRICAL CHARACTERISTICS
VDF (T) = 0.8V to 6.0V 2% VDF (T) = 2.6V to 5.0V 1% PARAMETER Detect Voltage SYMBOL VDF MIN. VDF(T) x 0.98 VDF(T) VDF(T)=2.6V~5.0V *2 x 0.99 VDF x 0.02 VIN = 1.5V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V VDF(T) = 0.8V to 1.5V 0.7 VDF(T) = 1.6V to 6.0V 0.7 VIN = 0.7V 0.10 N-ch VDS = 0.5V 0.85 VIN = 1.0V VIN = 6.0V CMOS, P-ch VDS = 2.1V VIN = 1.0V 1.0 VIN = 2.0V 3.0 N-ch VDS = 0.5V VIN = 3.0V 5.0 VIN = 4.0V 6.0 7.0 VIN = 5.0V CMOS, P-ch VDS = 2.1V VIN = 8.0V VIN=6.0V, VOUT=6.0V*1 CMOS VIN=10.0V, VOUT=10.0V*2 N-ch Open Drain -40 Topr 85 Inverts from VDR to VOUT CONDITIONS VDF(T)=0.8V~1.5V *1 VDF(T)=1.6V~6.0V *2 TYP. VDF(T) VDF(T) VDF x 0.05 0.7 0.8 0.9 1.0 1.1 0.80 2.70 -7.5 2.2 7.7 10.1 11.5 13.0 -10.0 10 10 100 0.03 MAX. VDF(T) x 1.02 VDF(T) x 1.01 VDF x 0.08 2.3 2.7 3.0 3.2 3.6 6.0 10.0 -1.5 -2.0 100 0.20 Ta=25 UNITS CIRCUITS V V V 1 1 1
Hysteresis Range
VHYS
Supply Current
ISS
A
2
Operating Voltage *1 Operating Voltage *2 Output Current *1
VIN
V
1 3 4
IOUT Output Current *2
mA 3
4 nA ppm/ ms 3 5
Leak Current
Ileak
Temperature VDF Characteristics ToprVDF Delay Time tDLY (VDRVOUT inversion)
NOTE: *1: Low Voltage: VDF(T)=0.8V~1.5V *2: Standard Voltage: VDF(T)=1.6V~6.0V VDF (T): Setting detect voltage Release Voltage: VDR = VDF + VHYS
7/17
XC61C Series
OPERATIONAL EXPLANATION
(Especially prepared for CMOS output products)
When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS) level. When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.) When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS) level will be maintained. When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) The difference between VDR and VDF represents the hysteresis range.
Timing Chart
8/17
XC61C
Series
NOTES ON USE
1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below) 3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below ) 4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's supply current flowing through the VIN pin. 5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than several sec / V. 6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source. In such cases, please ensure that RIN is less than 10k and that C is more than 0.1F.
Oscillation Description
(1) Output current oscillation with the CMOS output configuration When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input (IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at the VIN pin will rise and release operations will begin over again. Oscillation may occur with this " release - detect - release " repetition. Further, this condition will also appear via means of a similar mechanism during detect operations. (2) Oscillation as a result of through current Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to Figure 3) Since hysteresis exists during detect operations, oscillation is unlikely to occur.
9/17
XC61C Series
100k*
10/17
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS
Low Voltage
11/17
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Low Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS (.)
1.4 1.4 Ta=25
(.)
3.0 Ta=25
(.)
Ta=25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Output Current: IOUT (mA)
1.2 1.0 0.8 0.6 0.4 0.2 0 0
1.2 1.0 0.8 0.6 0.4 0.2 0 0
VIN =0.8V
VIN =0.8V
2.5 2.0 1.5 1.0 0.5 0
VIN =1.0V
0.7V
0.7V
0.2
0.4
0.6
0.8
1.0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.4
0.6
0.8
1.0
VDS (V)
VDS (V)
VDS (V)
(.)
1.4 8.0 Ta=25 VIN =0.8V
(.)
Ta=25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
1.2 1.0 0.8 0.6 0.4 0.2 0 0
VIN =1.4V 6.0 1.2V
4.0
0.7V
2.0
1.0V
0.2
0.4
0.6
0.8
1.0
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VDS (V)
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage (.) (.)
2.5 5.0 10
(.)
Output Current: IOUT (mA)
VDS=0.5V 8 6 4 2 0 Ta=-40 25
Output Current: IOUT (mA)
2.0 1.5 1.0 0.5 0
Output Current: IOUT (mA)
VDS=0.5V
VDS=0.5V 4.0
Ta=-40 25
3.0 2.0 80 1.0 0
Ta=85 25 -40 0 0.2 0.4 0.6 0.8 1.0
85
0
0.2
0.4
0.6
0.8
1.0
1.2
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Input Voltage: VIN (V)
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(6) P-ch Driver Output Current vs. Input Voltage (.)
12 12 Ta= 25 VDS=2.1V Ta= 25
(.)
12 VDS=2.1V 1.5V 1.0V 0.5V
(.)
10 8 6 4 2 0 Ta= 25 VDS=2.1V 1.5V 1.0V 0.5V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
8 6 4 2 0
1.5V 1.0V 0.5V
8 6 4 2 0
Output Current: IOUT (mA)
10
10
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN (V)
Input Voltage: VIN (V)
Input Voltage: VIN (V)
12/17
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage
(1) Supply Current vs. Input Voltage (.
3.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 2 4 6 -40 8 10 25 Ta=85 3.0 2.5 2.0 1.5 1.0 0.5 0 0 2 4 6 -40 8 10 25 Ta=85
(.)
Supply Current: ISS (A)
Input Voltage: VIN (V)
Supply Current: ISS (A)
Input Voltage: VIN (V)
(.)
3.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 2 4 6 8 10 -40 25 Ta=85 3.0 2.5 2.0 1.5 1.0 0.5 0
(.)
Supply Current: ISS (A)
Supply Current: ISS (A)
25
Ta=85
-40
0
2
4
6
8
10
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature (.)
Detect, Release Voltage: VDF, VDR (V) Detect, Release Voltage: VDF, VDR (V)
1.90 2.80 VDR 2.75
(.)
1.85
VDR
1.80 VDF
2.70 VDF
1.75 -50
-25
0
25
50
75
100
2.65 -50
-25
0
25
50
75
100
Ambient Temperature : Ta ()
Ambient Temperature : Ta ()
(.)
3.8 4.7
(.)
Detect, Release Voltage: VDF, VDR (V)
VDR 4.6
Detect, Release Voltage: VDF, VDR (V)
VDR 3.7
3.6 VDF 3.5 -50
4.5 VDF
-25
0
25
50
75
100
4.4 -50
-25
0
25
50
75
100
Ambient Temperature : Ta ()
Ambient Temperature : Ta ()
13/17
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(3) Output Voltage vs. Input Voltage .V)
2 3
.)
Output Voltage: VOUT (V)
Ta=25 2
Output Voltage: VOUT (V)
Ta=25
1
1
0
0
1
2
0
0
1
2
3
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(.V)
4 5
(.V)
Output Voltage: VOUT (V)
Ta=25 4 3 2 1 0
Output Voltage: VOUT (V)
Ta=25 3
2
1
0
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V) Note : The N-channel open drain pull up resistance value is 100k . open drain pull up resistance value is 100k.
Input Voltage: VIN (V)
(4) N-ch Driver Output Current vs. VDS (.)
10 Ta=25 VIN =1.5V 30 Ta=25
(.V)
Output Current: IOUT (mA)
25 20 2.0V 15 10 1.5V 5 1.0V 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VIN =2.5V
Output Current: IOUT (mA)
8 6 4 1.0V 2 0
0
0.5
1.0
1.5
2.0
VDS (V)
VDS (V)
80 (.V) Ta=25 80 70 Ta=25 VIN =4.0V 70 60 VIN =4.0V 60 3.5V 50 3.5V 50 40 3.0V 40 3.0V 30 2.5V 30 2.5V 20 20 2.0V 2.0V 10 1.5V 10 1.5V 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VDS (V) VDS (V)
(.)
40
XC61CC4502 (4.5V )
Output Current: IOUT (mA)
30 2.5V 20 2.0V 10 1.5V 0 0 0.5 1.0 1.5 2.0 2.5 3.0
VDS (V)
14/17
Output Current: IOUT (mA)
Ta=25
VIN =3.0V
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS (.V)
1000 Ta=25 VIN =0.8V 1000
.V)
Output Current: IOUT (A)
Ta=25 800 600 400 200 0 VIN =0.8V
Output Current: IOUT (A)
800 600 0.7V 400 200 0
0.7V
0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.4
0.6
0.8
1.0
VDS (V)
VDS (V)
(.V)
1000 Ta=25 1000
(.V)
Ta=25
Output Current: IOUT (A)
Output Current: IOUT (A)
800 600 400 200 0
VIN =0.8V
800 600 400 200 0
VIN =0.8V
0.7V
0.7V
0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.4
0.6
0.8
1.0
VDS (V)
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage (.V)
15 VDS=0.5V 25
(.V)
VDS=0.5V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=-40
Ta=-40
20 25 15 10 85 5 0
10
25
5 85 0
0
0.5
1.0
1.5
2.0
0
0.5
1.0
1.5
2.0
2.5
3.0
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(.V)
30 VDS=0.5V 40
(.V)
VDS=0.5V
Output Current: IOUT (mA)
25 20 15 10 5 0
Output Current: IOUT (mA)
Ta=-40 25
Ta=-40 25
30
20 85
85
10
0
1
2
3
4
0
0
1
2
3
4
5
Input Voltage: VIN (V)
Input Voltage: VIN (V)
15/17
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(6) P-ch Driver Output Current vs. Input Voltage (.V)
15 VDS=2.1V 15 VDS=2.1V
(.V)
Output Current: IOUT (mA)
Output Current: IOUT (mA)
10
1.5V
1.5V 10 1.0V 5
1.0V 5
0.5V
0.5V
0 0 2 4 6 8 10
0 0 2 4 6 8 10
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(.V)
15 VDS=2.1V 15
(.V)
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
10
1.5V 1.0V
10
1.5V
1.0V 5
5
0.5V
0.5V
0 0 2 4 6 8 10
0 0 2 4 6 8 10
Input Voltage: VIN (V)
Input Voltage: VIN (V)
16/17
XC61C
Series
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this catalog within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd.
17/17


▲Up To Search▲   

 
Price & Availability of XC61CCN0901NB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X